Synthetic Routes to  $[Fe_2X_2(X_5)_2]^{2-}$  Anions (X = S, Se).

Structure and Properties of  $[Fe_2Se_2(Se_5)_2]^{2-}$ , a Complex with Selenido and Pentaselenido Ligands

## H. STRASDEIT, B. KREBS and G. HENKEL

Anorganisch- Chemisches Institut der Universität, Corrensstr. 36, D-4400 Münster, F.R.G.

Received April 30, 1984

Several isolated binary transition-metal-sulfur complexes containing polysulfido ligands,  $S_x^{2-}$ , with x > 2 have been structurally characterized, *e.g.* [Fe<sub>2</sub>S<sub>2</sub>(S<sub>5</sub>)<sub>2</sub>]<sup>2-</sup> [1], [M(S<sub>4</sub>)<sub>2</sub>]<sup>2-</sup> (M = Ni, Pd) [2], [Cu<sub>3</sub>(S<sub>6</sub>)<sub>3</sub>]<sup>3-</sup> [3], [Cu<sub>4</sub>(S<sub>4</sub>)<sub>3-x</sub>(S<sub>5</sub>)<sub>x</sub>]<sup>2-</sup> (x = 0-2) [4], [Cu<sub>6</sub>(S<sub>4</sub>)<sub>3</sub>(S<sub>5</sub>)]<sup>2-</sup> [5], [MoS(S<sub>4</sub>)<sub>2</sub>]<sup>2-</sup> [6], [Mo<sub>2</sub>S<sub>4</sub>(S<sub>2</sub>)(S<sub>4</sub>)]<sup>2-</sup> [7], [Pt(S<sub>5</sub>)<sub>3</sub>]<sup>2-</sup> [8], [Au(S<sub>9</sub>)]<sup>-</sup> [9], and [Hg(S<sub>6</sub>)<sub>2</sub>]<sup>2-</sup> [10]. One possible method in the surphosis of M/S complexes is the use of poly. the synthesis of  $M/S_x$  complexes is the use of polymeric or complex compounds with metal atoms already bonded to sulfur as starting materials. As an example  $[Fe_2S_2(S_5)_2]^{2-}$  is prepared from  $[Fe(SPh)_4]^{2-}$  by reaction with PhCH<sub>2</sub>SSSCH<sub>2</sub>Ph example [1]. This dimeric complex contains a planar  $[Fe_2S_2]^{2+}$ core similar to the inorganic portion of oxidized [2Fe-2S] protein centers. The existence of analogous selenium fragments,  $[Fe_2Se_2]^{2+}$ , as well as of the  $[Fe_4Se_4]^{2+}$  and  $[Fe_6Se_9]^{2-}$  cluster cores has been demonstrated by the structural characterizations of  $[Fe_2Se_2(SC_6H_4-p-Me)_4]^{2-}$  [11],  $[Fe_4Se_4(SPh)_4]^{2-}$  [12], and  $[Fe_6Se_9(SMe)_2]^{4-}$  [13], respectively. In contrast to selenide little work has been done to introduce polyselenido ligands to transition-metal complexes. Here we report the preparation and selected spectroscopic properties of  $[Fe_2X_2(X_5)_2]^{2-1}$ complexes (X = S: 1, X = Se: 2) and the X-ray structure of  $(Ph_4P)_2$  [Fe<sub>2</sub>Se<sub>2</sub>(Se<sub>5</sub>)<sub>2</sub>].

Besides the literature method mentioned above the following reactions can be used for the preparation of 1:

(i) A solution of 1 is obtained when the dark precipitation formed by the reaction of FeCl<sub>3</sub> with 3 equivalents of  $(p-Me-C_6H_4)_2PS_2^-$  in methanol is treated with Na<sub>2</sub>S<sub>4</sub>.

(ii) In acetonitrile FeCl<sub>3</sub> reacts with  $\text{Et}_2\text{NPS}(\text{SH})_2$ in a 1:2 mol ratio to form a soluble complex whose electronic spectrum indicates a Fe<sup>III</sup>ClS<sub>4</sub> coordination unit similar to that found in the structurally characterized complex [FeCl{S<sub>2</sub>PS(OMe)}<sub>2</sub>]<sup>2-</sup> [14]. Treatment of this solution with elemental sulfur and pyridine results in the formation of **1**.

(iii) The reaction of  $FeCl_3$  or  $FeCl_2$  with elemental sulfur and  $CaH_2$  in dimethylformamide (DMF) at

In each case the  $Ph_4P^+$  salt of 1 has been identified by elemental analysis, the characteristic UV/Vis spectrum of 1 and/or X-ray structure determination.

The reaction with sodium described under (iii) proceeds in an analogous way with selenium instead of sulfur:

$$2\text{FeCl}_2 + 12\text{X} + 6\text{Na} \xrightarrow{\text{DMF}}_{70 \text{ °C}}$$

$$Na_{2}[Fe_{2}X_{2}(X_{5})_{2}] + 4NaCl$$

(X = S or Se)

Under an atmosphere of pure nitrogen 1.27 g (10 mmol) of FeCl<sub>2</sub>, 4.7 g (60 mmol) of powdered black selenium, and 0.69 g (30 mmol) of sodium in 50 ml of DMF were stirred at 70 °C for 6 hours. After cooling, 50 ml of methanol were added to the deep-brown reaction mixture. The solution was filtered, and the filtrate treated with 4.2 g (10 mmol) of Ph<sub>4</sub>PBr. After 2 days the black crystal-line (Ph<sub>4</sub>P)<sub>2</sub>[Fe<sub>2</sub>Se<sub>2</sub>(Se<sub>5</sub>)<sub>2</sub>] is collected, washed with methanol and dried *in vacuo*; yield: 3.3 g (38%). In a similar manner (Ph<sub>4</sub>P)<sub>2</sub>[Fe<sub>2</sub>Se<sub>2</sub>(S<sub>5</sub>)<sub>2</sub>] can be prepared in 49% yield.

Crystals of  $(Ph_4P)_2[Fe_2Se_2(Se_5)_2]$  are monoclinic, space group C2/c with a = 21.451(5), b = 16.076(4), c = 16.244(4) Å,  $\beta = 103.63(2)^\circ$ , V = 5443.9 Å<sup>3</sup>, Z = 4,  $D_x = 2.121$  g cm<sup>-3</sup>, and  $\mu = 92.7$  cm<sup>-1</sup>. Single crystal X-ray diffraction data were collected on a Syntex P2<sub>1</sub> four-circle diffratometer (MoKa radiation, scintillation counter,  $4^\circ < 2\theta < 54^\circ$ ,  $\theta - 2\theta$  scan, 5984 independent reflections, 3617 with  $I > 1.96 \sigma(I)$ , empirical absorption correction). During data collection the crystal was cooled to -133 °C by a stream of cold nitrogen.

The structure was solved and successfully refined in the space group C2/c. The positions of the Fe and Se atoms were provided by direct methods. Repeated least-squares refinements and difference Fourier syntheses revealed the positions of all other non-hydrogen atoms. Final full-matrix least-squares refinements with anisotropic thermal vibrations of the Fe, Se, and P atoms, isotropic temperature factors of the C atoms and all H atoms fixed at their idealized positions converged to  $R(R_w) = 0.072$ (0.054). In crystals of  $(Ph_4P)_2[Fe_2Se_2(Se_5)_2]$ discrete anions 2 are separated by tetraphenylphosphonium cations. The cation features the expected structural properties and calls for no special comment.

© Elsevier Sequoia/Printed in Switzerland



Fig. 1. Thermal ellipsoid plot (50% probability) of the [Fe<sub>2</sub>- $Se_2(Se_5)_2$ <sup>2-</sup> anion. Bond lengths [Å] and angles [°] with standard deviations in parenthesis: Fe-Fe' 2.787(2), Fe-Se(1) 2.329(2), Fe-Se(1') 2.317(2), Fe-Se(2) 2.428(2), Fe-Se(6) 2.421(2), Se(2)-Se(3) 2.345(2), Se(3)-Se(4)2.318(2), Se(4)-Se(5) 2.337(2), Se(5)-Se(6) 2.347(2); Se(1)-Fe-Se(1') 106.27(8), Se(1)-Fe-Se(2) 114.95(8), Se(1)-Fe-Se(6) 115.18(8), Se(1')-Fe-Se(2) 102.93(7), Se(1')-Fe-Se(6) 107.93(8), Se(2)-Fe-Se(6) 108.61(7), Fe-Se(1)-Fe' 73.73(7), Fe-Se(2)-Se(3) 102.86(6), Se(2)-Se(3)-Se(4) = 104.05(6), Se(3)-Se(4)-Se(5) = 103.35(7),Se(4)-Se(5)-Se(6) = 104.27(7), Fe-Se(6)-Se(5) = 97.35(7).The primed atoms are related to the unprimed ones by the symmetry transformation -x, -y, -z. Listings of all bond lengths and valence angles as well as of observed and calculated structure factors have been deposited together with final atomic parameters with the Editor.

The anion 2 is shown in Fig. 1; bond lengths and angles are given in the caption. The complex possesses idealized C2h symmetry and crystallographically imposed C<sub>i</sub> symmetry which gives rise to the exact planarity of the central  $Fe_2(\mu_2-Se)_2$  rhomb. Due to a significant shift of the Fe-( $\mu_2$ -X) bond lengths towards larger values on going from X = S (2.192 Å in 1) to X = Se (2.323 Å in 2), the Fe···Fe distance in 2 (2.787(2) Å) is 0.086 Å longer than the corresponding distance in 1, but is still in the range where direct Fe···Fe interactions are possible. The lengthening of the Fe-( $\mu_2$ -X) bond is accompanied by a simultaneous reduction of the Fe-( $\mu_2$ -X)-Fe angle  $(76.1(1)^{\circ}$  in 1 and  $73.73(7)^{\circ}$  in 2, respectively). The Fe atoms of 2 are each tetrahedrally coordinated by two  $\mu_2$ -Se atoms and two Se atoms of a Se<sub>5</sub><sup>2--</sup> chelate ligand with Se-Fe-Se angles ranging from  $102.93(7)^{\circ}$  to  $115.18(8)^{\circ}$ . 2 can be described as a spiro-tricyclic system composed of the central fourmembered  $Fe_2(\mu_2-Se)_2$  cycle and two six-membered FeSe<sub>5</sub> chelate rings. From a structural point of view the FeSe<sub>5</sub> rings may be regarded as metal-substituted Se<sub>6</sub> molecules. Both FeSe<sub>5</sub> and Se<sub>6</sub> exist in the chair conformation with dihedral angles of 72.3° (range: 66.8 to 80.5°) and 76.2(4)°, respectively [15]. The averaged Se–Se bond length in 2 (2.337 Å) is the same, within the limits of experimental error, as in the three monoclinic modifications of selenium (from 2.334 to 2.337 Å,  $Se_8$  molecules) [16] and is only slightly smaller than the Se-Se bond lengths reported for rhombohedral (2.356(9) Å, Se<sub>6</sub> mole-



Fig. 2. FT IR spectra of polycrystalline (A)  $(Ph_4P)_2[Fe_2S_2-(S_5)_2]$  and (B)  $(Ph_4P)_2[Fe_2Se_2(Se_5)_2]$ .

cules) [15] and trigonal selenium (2.373(5) Å, Se<sub> $\infty$ </sub> chains) [17]. In addition, the averaged bond angle at Se is 102.38° for the FeSe<sub>5</sub> group compared to 101.1(3)° for Se<sub>6</sub>.

In Figure 2 the infrared spectra of the Ph<sub>4</sub>P<sup>+</sup> salts of 1 and 2 are shown (Bruker IFS-114 FT-IR-spectrometer, nujol suspensions between polyethylene plates). The strong absorptions near 530 cm<sup>-1</sup> are caused by the  $Ph_4P^+$  cations.  $(Ph_4P)_2[Fe_2S_2(S_5)_2]$ has three bands at 414, 338 and 315 cm<sup>-1</sup> that are assigned to Fe-S stretching vibrations on the basis of vibrational assignments for other [2Fe-2S] species [18]. A band at 474 cm<sup>-1</sup> is probably due to a S-S vibration. S-S modes at similar IR frequencies have been observed for MS4 and MS5 chelate rings [19] and for  $S_6$  [20]. Fe-Se vibrations of  $(Ph_4P)_2$ - $[Fe_2Se_2(Se_5)_2]$  occur at 312 cm<sup>-1</sup> and in the  $250 \text{ cm}^{-1}$  region where three bands at 264, 258 and 247 cm<sup>-1</sup> are observed. The two bands of lower intensity (264 and 247 cm<sup>-1</sup>) are also possible candidates for Se-Se vibrations. In the IR spectrum of Se<sub>6</sub> an absorption band at 253 cm<sup>-1</sup> is found [21].

The electronic spectrum of  $(Ph_4P)_2$  [Fe<sub>2</sub>Se<sub>2</sub>- $(Se_5)_2$ ] in DMF solution (absorption maxima at 312(sh), 386(sh), 415(sh), 498, and 670(sh) nm) resembles that of the sulfur homolog. Corresponding bands are red-shifted.

## Acknowledgements

The authors wish to acknowledge the support from the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and from the Fond der Chemischen Industrie. H. S. is indebted to the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie for the award of a predoctoral fellowship.

## References

- 1 D. Coucouvanis, D. Swenson, P. Stremple and N. C. Baenziger, J. Am. Chem. Soc., 101, 3392 (1979).
- 2 A. Müller, E. Krickemeyer, H. Bögge, W. Clegg and G. M. Sheldrick, Angew. Chem., 95, 1030 (1983).
- 3 A. Müller and U. Schimanski, Inorg. Chim. Acta, 77, L187 (1983).
- 4 G. Henkel, P. Betz and B. Krebs, 29th IUPAC Congress, Cologne, June 1983, Abstracts of Papers, p. 30, and unpublished results;

A. Müller, M. Römer, E. Krickemeyer and H. Bögge, Naturwissenschaften, 71, 43 (1984).

5 G. Henkel, P. Betz and B. Krebs, J. Chem. Soc., Chem. Commun., 314 (1984);

A. Müller, M. Römer, H. Bögge, E. Krickemeyer and D. Bergmann, *ibid.*, 348 (1984).

6 E. D. Simhon, N. C. Baenziger, M. Kanatzidis, M. Draganjac and D. Coucouvanis, J. Am. Chem. Soc., 103, 1218 (1981).

- 7 W. Clegg, G. Christou, C. D. Garner and G. M. Sheldrick, *Inorg. Chem.*, 20, 1562 (1981).
- 8 P. E. Jones and L. Katz, Acta Cryst., B25, 745 (1969). 9 G. Marbach and J. Strähle, Angew. Chem., 96, 229
- (1984).
  10 A. Müller, J. Schimanski and U. Schimanski, Angew. Chem., 96, 158 (1984).
- 11 J. M. Berg and R. H. Holm, in 'Iron-Sulfur Proteins', T. G. Spiro (ed.), Wiley, New York (1982), Chapter 1, p. 1.
- 12 M. A. Bobrik, E. J. Laskowski, R. W. Johnson, W. O. Gillum, J. M. Berg, K. O. Hodgson and R. H. Holm, Inorg. Chem., 17, 1402 (1978).
- 13 H. Strasdeit, B. Krebs and G. Henkel, 23 rd International Conference on Coordination Chemistry, Boulder, July/ August 1984, Abstracts of Papers.
- 14 H. Strasdeit, B. Krebs and G. Henkel, to be published.
- 15 Y. Miyamoto, Jpn. J. Appl. Phys., 19, 1813 (1980).
- 16 O. Foss and V. Janickis, J. Chem. Soc., Dalton Trans., 624 (1980); and references therein.
- P. Cherin and P. Unger, *Inorg. Chem.*, 6, 1589 (1967).
   T. G. Spiro, J. Hare, V. Yachandra, A. Gewirth, M. K. Johnson and E. Remsen, in 'Iron-Sulfur Proteins', T. G. Spiro (ed.), Wiley, New York (1972), Chapter 11, p. 407.
- 19 H. Köpf, A. Wirl and W. Kahl, Angew. Chem., 83, 146 (1971); and references therein.
- 20 L. A. Nimon, V. D. Neff, R. E. Cantley and R. O. Buttlar, J. Mol. Spectrosc., 22, 105 (1967);
  J. Berkowitz, W. A. Chupka, E. Bromels and R. L. Belford, J. Chem. Phys., 47, 4320 (1967).
- 21 K. Nagata, K. Ishibashi and Y. Miyamoto, Jpn. J. Appl. Phys., 19, 1569 (1980).