Synthetic Routes to $[Fe₂X₂(X₅)₂]²⁻$ Anions (X = S, **Se).**

Structure and Properties of $[Fe_2Se_2(Se_5)_2]^2$ **, a Complex with Selenido and Pentaselenido Ligands**

H. STRASDEIT, B. KREBS and G. HENKEL

Anorganisch- Chemisches Institut der Universitit, Corrensstr. 36, D-4400 Miinster, F.R.G.

Received April 30,1984

Several isolated binary transition-metal-sulfur complexes containing polysulfido ligands, S_x^2 , with $x > 2$ have been structurally characterized, e.g. $[Fe_2S_2(S_5)_2]^2$ ⁻ $[1]$ $[M(S_1)_2]^2$ ⁻ $(M = Ni$ Pd) $[2]$ $\text{Cu}_3(\text{S}_4)_{3}^{5/3}$ ^{[31} [Cu₄(S₄)₂ (S₅)¹²⁻ (x = 0-2) $[6(1)$ $[(2)$ ₂ (5) ₂ (5) ²⁻ $[5]$ $[1005(S_1)$ ₂²⁻ $[6]$ $M_{9.5}S_{4}(S_{2})S_{4}^{3}I^{2-} [7]$ $[Pr(S_{2})_{2}]^{2-} [8]^{2} [A_{11}(S_{2})]^{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$. [10] One possible method in t_{ref} and t_{ref} (t_{ref}), who possess moments in the synthesis of M/S_x complexes is the use of poly-
meric or complex compounds with metal atoms already bonded to sulfur as starting materials. As an example $[Fe_2S_2(S_5)_2]^{2-}$ is prepared from $F_e(SPh)$, $12^{\frac{1}{2}}$ by reaction with DFH SSSCH Ph prepared $[1]$ This dimeric complex contains a planar $[Fe, S, 12+$ [1]. This dimeric complex contains a planar $[Fe₂S₂]²⁺$ core similar to the inorganic portion of oxidized [2Fe-2S] protein centers. The existence of analo- $\frac{1}{2}$ for $\frac{1}{2}$ fragments, $\frac{1}{2}$, $\frac{1}{2}$, as well as of the $[Fe_6Se_1]$ ²⁺ and $[Fe_6Se_2]$ ²⁻ cluster cores has been demonstrated by the structural characterizations of $[Fe, Se, (SC, H_{1-p}, Ma)]^{2-}$ [111, [Fe, Se. (SPh) 1^{2-} $[12]$ and $[Fe, Se, (SMe)]$ ⁴⁻ $[13]$ respectively. $\begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$ In contrast to selenide little work has been done to introduce polyselenido ligands to transition-metal complexes. Here we report the pieparation and selected spectroscopic properties of $[Fe₂X₂(X₅)₂]$ ²⁻ complexes $(X = S: 1, X = Se: 2)$ and the X-ray structure of $(\text{Ph}_4\text{P})_2$ $[\text{Fe}_2\text{Se}_2(\text{Se}_5)_2]$.

Besides the literature method mentioned above the following reactions can be used for the preparation of **1:**

(i) A solution of **1** is obtained when the dark precipitation formed by the reaction of $FeCl₃$ with 3 equivalents of $(p-Me-C_6H_4)_2PS_2$ in methanol is treated with $Na₂S₄$.

(ii) In acetonitrile FeCl₃ reacts with $Et₂NPS(SH)₂$ in a 1:2 mol ratio to form a soluble complex whose electronic spectrum indicates a $Fe^{III}ClS₄$ coordination unit similar to that found in the structurally characterized complex $[FeCl{S_2PS(OMe)}_2]^2$ ⁻ [14]. Treatment of this solution with elemental sulfur and pyridine results in the formation of **1.**

(iii) The reaction of $FeCl₃$ or $FeCl₂$ with elemental sulfur and $CaH₂$ in dimethylformamide (DMF) at

70 "c yields **1.** The complex is also obtained from $FeCl₂$ and elemental sulfur using sodium instead of $CaH₂$.

In each case the Ph_4P^* salt of 1 has been identified by elemental analysis, the characteristic UV/Vis spectrum of **1** and/or X-ray structure determination.

The reaction with sodium described under (iii) proceeds in an analogous way with selenium instead of sulfur :

$$
2\text{FeCl}_2 + 12\text{X} + 6\text{Na} \xrightarrow{DMF} \text{70}^{\circ}\text{C}
$$

$$
Na_2[Fe_2X_2(X_5)_2] + 4NaCl
$$

 $(X = S \text{ or } Se)$

Under an atmosphere of pure nitrogen 1.27 g (10 mmol) of $FeCl₂$, 4.7 g (60 mmol) of powdered black selenium, and 0.69 g (30 mmol) of sodium in 50 ml of DMF were stirred at 70 °C for 6 hours. After cooling, 50 ml of methanol were added to the deep-brown reaction mixture. The solution was filtered, and the filtrate treated with 4.2 g (10 mmol) of Ph₄PBr. After 2 days the black crystalline $(Ph_4P)_2$ $[Fe_2Se_2(Se_5)_2]$ is collected, washed with methanol and dried *in vacua;* yield: 3.3 g (38%). In a similar manner $(Ph_4P)_2[Fe_2S_2(S_5)_2]$ can be prepared in 49% yield.

Crystals of $(Ph_4P)_2 [Fe_2Se_2(Se_5)_2]$ are monoclinic, space group C2/c with $a = 21.451(5)$, $b =$ $6.076(4)$, c = 16.244(4) $8 \times 103.63(2)^{6}$, V = $(443.9 \t8³ \t7 = 4, D = 2.121 \t{g cm⁻³ \tand u = 0}$ 27 cm^{-1} . Single crystal X-ray diffraction data were collected on a Syntex $P2₁$ four-circle diffratometer (Mo $K\alpha$ radiation, scintillation counter, 4° $<$ 2 θ $<$ 54 $^{\circ}$, θ -2 θ scan, 5984 independent reflections, 3617 with $I > 1.96$ $\sigma(I)$, empirical absorption correction). During data collection the crystal was cooled to -133 °C by a stream of cold nitrogen.

The structure was solved and successfully refined in the space group C2/c. The positions of the Fe and Se atoms were provided by direct methods. Repeated least-squares refinements and difference Fourier syntheses revealed the positions of all other non-hydrogen atoms. Final full-matrix least-squares refinements with anisotropic thermal vibrations of the Fe, Se, and P atoms, isotropic temperature factors of the C atoms and all H atoms fixed at their idealized positions converged to $R(R_w) = 0.072$ (0.054) . In crystals of $(Ph_4P)_2 [Fe_2Se_2(Se_5)_2]$ discrete anions 2 are separated by tetraphenylphosphonium cations. The cation features the expected structural properties and calls for no special comment.

0020-1693/84/\$3.00 **Details and Superinted in Switzerland** C Elsevier Sequoia/Printed in Switzerland

Fig. 1. Thermal ellipsoid plot (50% probability) of the $[Fe₂-]$ $\text{Se}_2(\text{Se}_5)_2$ $]^2$ anion. Bond lengths [A] and angles [°] with standard deviations in parenthesis: Fe-Fe' 2.787(2), Fe-Se(l) 2.329(2), Fe-Se(1') 2.317(2), Fe-Se(2) 2.428(2), Fe-Se(6) 2.421(2), Se(2)-Se(3) 2.345(2), Se(3)-Se(4) 2.318(2), Se(4)-Se(S) 2.337(2), Se(5)-Se(6) 2.347(2); $Se(1) - Fe - Se(1')$ 106.27(8), $Se(1) - Fe - Se(2)$ 114.95(8), $Se(1) - Fe-Se(6)$ 115.18(8), $Se(1') - Fe-Se(2)$ 102.93(7), $Se(1')-Fe-Se(6)$ 107.93(8), $Se(2)-Fe-Se(6)$ 108.61(7), Fe-Se(1)-Fe' 73.73(7), Fe-Se(2)-Se(3) 102.86(6), Se(2)-Se(3)-Se(4) $104.05(6)$, Se(3)-Se(4)-Se(5) $103.35(7)$, Se(4)-Se(5)-Se(6) 104.27(7), Fe-Se(6)-Se(5) 97.35(7). The primed atoms are related to the unprimed ones by the symmetry transformation $-x$, $-y$, $-z$. Listings of all bond lengths and valence angles as well as of observed and calculated structure factors have been deposited together with final atomic parameters with the Editor.

The anion 2 is shown in Fig. 1; bond lengths and angles are given in the caption. The complex possesses idealized C_{2h} symmetry and crystallographically imposed C_i symmetry which gives rise to the exact planarity of the central $Fe₂(\mu₂-Se)₂$ rhomb. Due to a significant shift of the $Fe-(\mu_2-X)$ bond lengths towards larger values on going from $X = S(2.192 \text{ Å})$ in 1) to $X =$ Se (2.323 Å in 2), the Fe \cdots Fe distance in 2 (2.787(2) Å) is 0.086 Å longer than the corresponding distance in **1,** but is still in the range where direct Fe \cdots Fe interactions are possible. The lengthening of the Fe- (μ_2-X) bond is accompanied by a simultaneous reduction of the Fe- (μ_2-X) -Fe angle $(76.1(1)^\circ$ in 1 and $73.73(7)^\circ$ in 2, respectively). The Fe atoms of 2 are each tetrahedrally coordinated by two μ_2 -Se atoms and two Se atoms of a Se_s²⁻ chelate ligand with Se-Fe-Se angles ranging from $102.93(7)$ ^o to $115.18(8)$ ^o. 2 can be described as a spiro-tricyclic system composed of the central fourmembered $Fe₂(\mu_2-Se)₂$ cycle and two six-membered FeSes chelate rings. From a structural point of view the FeSe_s rings may be regarded as metal-substituted Se₆ molecules. Both FeSe₅ and Se₆ exist in the chair conformation with dihedral angles of 72.3' (range: 66.8 to 80.5°) and $76.2(4)^\circ$, respectively $[15]$. The averaged Se-Se bond length in 2 (2.337 Å) is the same, within the limits of experimental error, as in the three monoclinic modifications of selenium (from 2.334 to 2.337 Å, Se_8 molecules) [16] and is only slightly smaller than the Se-Se bond lengths reported for rhombohedral $(2.356(9)$ Å, Se₆ mole-

Fig. 2. FT IR spectra of polycrystalline (A) $(\text{Ph}_4\text{P})_2$ [Fe₂S₂- $(S_5)_2$] and (B) $(Ph_4P)_2$ [Fe₂ Se₂ (Se₅)₂].

cules) [15] and trigonal selenium $(2.373(5)$ Å, Se_{∞} chains) [17]. In addition, the averaged bond angle at Se is 102.38" for the FeSes group compared to $101.1(3)$ ° for Se₆.

In Figure 2 the infrared spectra of the Ph_4P^+ salts of **1** and 2 are shown (Bruker IFS-l 14 FT-IR-spectroneter, nujol suspensions between polyethylene lates). The strong absorptions near 530 cm^{-1} are caused by the Ph₄P⁺ cations. $(\text{Ph}_4\text{P})_2$ [Fe₂S₂(S₅)₂] has three bands at 414, 338 and 315 cm^{-1} that are assigned to Fe-S stretching vibrations on the basis of vibrational assignments for other [2Fe-2S] species $[18]$. A band at 474 cm^{-1} is probably due to a S-S vibration. S-S modes at similar IR frequencies have been observed for $MS₄$ and $MS₅$ chelate rings 19] and for S_6 [20]. Fe-Se vibrations of $(Ph_4P)_{2}$ - $[Fe₂Se₂(Se₂)₂]$ occur at 312 cm⁻¹ and in the 250 cm^{-1} region where three bands at 264, 258 and 247 cm^{-1} are observed. The two bands of lower intensity (264 and 247 cm^{-1}) are also possible candidates for Se-Se vibrations. In the IR spectrum of Se₆ an absorption band at 253 cm⁻¹ is found $[21]$.

The electronic spectrum of $(Ph_4P)_2$ $[Fe_2Se_2$ **(Se,)z]** in DMF solution (absorption maxima at 312(sh), 386(sh), 415(sh), 498, and 670(sh) nm) resembles that of the sulfur homolog. Corresponding bands are red-shifted.

Acknowledgements

The authors wish to acknowledge the support from the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and from the Fond der Chemischen Industrie. H. S. is indebted to the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie for the award of a predoctoral fellowship.

References

- D. Coucouvanis, D. Swenson, P. Stremple and N. C. Baenziger, J. Am. Chem. Soc., 101, 3392 (1979).
- 2 A. Müller, E. Krickemeyer, H. Bögge, W. Clegg and G. M. Sheldrick, *Angew. Chem., 95, 1030 (1983).*
- A. Miiller and U. Schimanski, *Inorg. Chim. Acta, 77, L187 (1983).*
- *G.* Henkel, P. Betz and B. Krebs, *29th IUPAC Congress,* Cologne, June 1983, Abstracts of Papers, p. 30, and unpublished results;

A. Müller, M. Römer, E. Krickemeyer and H. Bögge, *Naturwissenschaften, 71, 43* (1984).

G. Henkel, P. Betz and B. Krebs, J. *Chem. Sot., Chem.* Commun., 314 (1984);

A. Miiller, M. Romer, H. Bogge, E. Krickemeyer and *J. Mol. Spectrosc., 22, 105 (1967);*

E. D. Simhon, N. C. Baenziger, M. Kanatzidis, M. Dra- Belford,J. *Chem.* Phys., 47, 4320 (1967). ganjac and D. Coucouvanis, *J. Am. Chem. Soc., 103*, *1218 (1981). Phys., 19, 1569 (1980).*

- W. Clegg, G. Christou, C. D. Garner and G. M. Sheldrick, *7* Inora. *Chem.. 20. 1562 (1981).*
- P. E: Jones and'L. Katz, *Acia Cryst., B2.5, 745 (1969). 8 G.* Marbach and J. Strahle, *Angew.* Chem., 96, 229 *9*
- (1984). A. Miiller, J. Schimanski and U. Schimanski, *Angew.* 10 Chem., 96, 158 (1984).
- 11 J. M. Berg and R. H. Holm, in 'Iron-Sulfur Proteins', T. G. Spiro (ed.), Wiley, New York (1982), Chapter 1, p. 1.
- M. A. Bobrik, E. J. Laskowski, R. W. Johnson, W. 0. 12 Gillum, J. M. Berg, K. O. Hodgson and R. H. Holm, Inorg. Chem., 17, 1402 (1978).
- H. Strasdeit, B. Krebs and G. Henkel, 23 *rd Internationai* 13 *Conference on Coordination Chemistry,* Boulder, July/ August 1984, Abstracts of Papers.
- 14 H. Strasdeit, B. Krebs and G. Henkel, to be published.
- 15 Y. Miyamoto,Jpn. J. *Appl.* Phys., 19, 1813 (1980).
- 16 0. Foss and V. Janickis, J. *Chem. Sot., Dalton Trans., 624* (1980); and references therein.
- 17 18 P. Cherin and P. Unger, *Inorg.* Chem., 6, 1589 (1967). T. G. Spiro, J. Hare, V. Yachandra, A. Gewirth, M. K. Johnson and E. Remsen. in 'Iron-Sulfur Proteins', T. G. Spiro (ed.), Wiley, New York (1972), Chapter 11, p. 407.
- 19 H. Kopf, A. Wirl and W. Kahl, *Angew. Chem.,* 83, 146 (1971); and references therein.
- 20 L. A. Nimon, V. D. Neff, R. E. Cantley and R. 0. Buttlar, D. Bergmann, *ibid.*, 348 (1984).

E. D. Simhon, N. C. Baenziger, M. Kanatzidis, M. Dra-

Belford, J. Chem. Phys., 47, 4320 (1967).
	-